Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins.

The alanine-based peptide Ac-XX(A)7OO-NH2, referred to as XAO (where X, A, and O denote diaminobutyric acid, alanine, and ornithine, respectively), has recently been proposed to possess a well defined polyproline II (P(II)) conformation at low temperatures. Based on the results of extensive NMR and CD investigations combined with theoretical calculations, reported here, we present evidence that...

متن کامل

The polyproline II conformation in short alanine peptides is noncooperative.

The finding that short alanine peptides possess a high fraction of polyproline II (PII) structure (Phi=-75 degrees, Psi=+145 degrees ) at low temperature has broad implications for unfolded states of proteins. An important question concerns whether or not this structure is locally determined or cooperative. We have monitored the conformation of alanine in a series of model peptides AcGGAnGGNH2 ...

متن کامل

Polyproline II helix is the preferred conformation for unfolded polyalanine in water.

Does aqueous solvent discriminate among peptide conformers? To address this question, we computed the solvation free energy of a blocked, 12-residue polyalanyl-peptide in explicit water and analyzed its solvent structure. The peptide was modeled in each of 4 conformers: alpha-helix, antiparallel beta-strand, parallel beta-strand, and polyproline II helix (P(II)). Monte Carlo simulations in the ...

متن کامل

Unfolded state of polyalanine is a segmented polyproline II helix.

Definition of the unfolded state of proteins is essential for understanding their stability and folding on biological timescales. Here, we find that under near physiological conditions the configurational ensemble of the unfolded state of the simplest protein structure, polyalanine alpha-helix, cannot be described by the commonly used Flory random coil model, in which configurational probabilit...

متن کامل

A novel method reveals that solvent water favors polyproline II over beta-strand conformation in peptides and unfolded proteins: conditional hydrophobic accessible surface area (CHASA).

In aqueous solution, the ensemble of conformations sampled by peptides and unfolded proteins is largely determined by their interaction with water. It has been a long-standing goal to capture these solute-water energetics accurately and efficiently in calculations. Historically, accessible surface area (ASA) has been used to estimate these energies, but this method breaks down when applied to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 2006

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.0510549103